
Package: porcelain (via r-universe)
September 26, 2024

Title Turn a Package into an HTTP API

Version 0.1.15

Description Wrapper around the plumber package to turn a package into
an HTTP API. This adds some conventions that we find useful,
such as some testing infrastructure and automatic validation of
responses against a json schema.

License MIT + file LICENSE

Encoding UTF-8

Language en-GB

URL https://github.com/reside-ic/porcelain

BugReports https://github.com/reside-ic/porcelain/issues

Depends R (>= 3.6.0)

Imports R6, V8, ids, jsonlite, jsonvalidate (>= 1.2.2), lgr, plumber

Suggests callr, fs, httr, knitr, mockery, pkgload, rmarkdown,
roxygen2, testthat, withr

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

VignetteBuilder knitr

Remotes ropensci/jsonvalidate

Config/testthat/edition 3

Repository https://vimc.r-universe.dev

RemoteUrl https://github.com/reside-ic/porcelain

RemoteRef master

RemoteSha 655da3517c1a795b4498b1b3e0b557ad8c9b3464

1

https://github.com/reside-ic/porcelain
https://github.com/reside-ic/porcelain/issues

2 porcelain

Contents

porcelain . 2
porcelain_add_headers . 4
porcelain_background . 5
porcelain_endpoint . 7
porcelain_input_body_binary . 9
porcelain_input_query . 10
porcelain_logger . 10
porcelain_package_endpoint . 11
porcelain_returning . 12
porcelain_roclet . 12
porcelain_state . 13
porcelain_stop . 13

Index 15

porcelain A porcelain object

Description

A porcelain object. This extends (via inheritance) a plumber object, and so only changes to the
plumber API are documented here.

Super classes

plumber::Hookable -> plumber::Plumber -> porcelain

Methods

Public methods:

• porcelain$new()

• porcelain$include_package_endpoints()

• porcelain$handle()

• porcelain$request()

• porcelain$clone()

Method new(): Create a porcelain object

Usage:
porcelain$new(..., validate = FALSE, logger = NULL)

Arguments:

... Parameters passed to plumber

porcelain 3

validate Logical, indicating if any validation (implemented by the validate_response argu-
ment) should be enabled. This should be set to FALSE in production environments. By de-
fault (if validate is NULL), we look at the value of the environment PORCELAIN_VALIDATE
- if true (case insensitive) then we will validate. This is intended to support easy use of
validation on continuous integration systems.

logger Optional logger, from the lgr package, perhaps created with porcelain_logger. If given,
then we will log at the beginning and end of the request.

Method include_package_endpoints(): Include package endpoints

Usage:
porcelain$include_package_endpoints(state = NULL, package = NULL)

Arguments:

state A named list of state, if your package requires any state-binding endpoints. Typically
these will be mutable state (database connections, job queues, or similar). You must provide
all states as required by the combination of all endpoints.

package Either a package name or environment (optional, usually we’ll find the right thing)

Method handle(): Handle an endpoint

Usage:
porcelain$handle(...)

Arguments:

... Either a single argument, being a porcelain_endpoint object representing an endpoint,
or arguments to pass through to plumber.

Method request(): Send a request to plumber for debugging
Sends a request to plumber so that the API can be easily tested without running the whole API.
The interface here will probably change, and may end up using the interface of httr.

Usage:
porcelain$request(
method,
path,
query = NULL,
body = NULL,
content_type = NULL,
request_id = NULL

)

Arguments:

method Name of HTTP method to use (e.g., GET)
path Path to send the request to
query Optional query parameters as a named list or character vector.
body Optional body (only valid with PUT, POST, etc).
content_type Optional content type (mime) which can be provided alongside body. If not

provided it is set to application/octet-stream if body is raw, or application/json
otherwise.

4 porcelain_add_headers

request_id Optional request ID. An ID which is attached to every log raised by this request.
Used for tracing purposes.

Method clone(): The objects of this class are cloneable with this method.

Usage:

porcelain$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

porcelain_add_headers Add headers to endpoint output data

Description

Intended to be used from endpoint target function. Note Content-Type headers are handled by
returning arg to endpoint.

Usage

porcelain_add_headers(data, headers)

Arguments

data Response data

headers Named list of headers to add.

Value

Data from endpoint target with headers

Examples

porcelain_add_headers("output",
list("Content-Dispotition" = "output_file.txt"))

porcelain_background 5

porcelain_background While porcelain makes it easy to test endpoints individually, you may
still want some integration or end-to-end tests where you bring the
entire API up and interact with it from your tests. This class provides
a helper for doing this in a way that is reasonably tidy.

Description

While porcelain makes it easy to test endpoints individually, you may still want some integration or
end-to-end tests where you bring the entire API up and interact with it from your tests. This class
provides a helper for doing this in a way that is reasonably tidy.

While porcelain makes it easy to test endpoints individually, you may still want some integration or
end-to-end tests where you bring the entire API up and interact with it from your tests. This class
provides a helper for doing this in a way that is reasonably tidy.

Public fields

log The path to the log file (read-only)

port The port used by the background server (read-only)

Methods

Public methods:
• porcelain_background$new()

• porcelain_background$start()

• porcelain_background$status()

• porcelain_background$stop()

• porcelain_background$url()

• porcelain_background$request()

Method new(): Create a background server object

Usage:
porcelain_background$new(
create,
args = NULL,
port = NULL,
log = NULL,
verbose = FALSE,
timeout = 60,
env = NULL

)

Arguments:
create A function that will create an api object
args Arguments that will be passed to create when creating the api object in the background

process

6 porcelain_background

port The port to use for the background server. If not given then a random free port will be
used in the range 8000 to 10000 - you can find the created port using the port field in the
resulting object, or use the $url() or $request() methods.

log The path to a log file to use
verbose Logical, indicating if we should print informational messages to the console on start/stop

etc.
timeout The number of seconds to wait for the server to become available. This needs to cover

the time taken to spawn the R process, and create your API object (loading all packages
needed) up to the point where the server is responsive. In most cases this will take 1-2s
but if you use packages that use many S4 methods or run this on a slow computer (e.g., a
continuous integration server) it may take longer than you expect. The default is one minute
which should be sufficient in almost all cases.

env A named character vector of environment variables (e.g., c(VARIABLE = "value")) to set
in the background process before launching the server. You can use this to control the
behaviour of the background server using variables your api recognises. In addition, we
export callr::rcmd_safe_env() and the value of PORCELAIN_VALIDATE.

Method start(): Start the server. It is an error to try and start a server that is already running.

Usage:
porcelain_background$start()

Method status(): Return the background server status. This will be one of:

• running: The server is running
• stopped: The server is stopped
• blocked: The server is stopped, but something else is running on the port that we would use
• starting: The server is starting up (not visible in normal usage)

Usage:
porcelain_background$status()

Method stop(): Stop a running server. If the server is not running, this has no effect.

Usage:
porcelain_background$stop()

Method url(): Create a url string for the server, interpolating the (possibly random) port num-
ber. You can use this in your tests like bg$url("/path")

Usage:
porcelain_background$url(path)

Arguments:
path String representing the absolute path

Method request(): Run a request to the server, using httr. This presents a similar inteface to
the request method on the porcelain object.

Usage:
porcelain_background$request(method, path, ...)

Arguments:

porcelain_endpoint 7

method The http method as a string (e.g., "GET"), passed to httr::VERB as the verb argument
path String representing the absolute path, passed to $url()

... Additional arguments passed to httr::VERB, such as query, or the body for a POST request.

porcelain_endpoint Basic endpoint object

Description

Create a porcelain_endpoint object that collects together an HTTP method (e.g., GET), a path
(e.g., /path) and a target R function. Unlike plumber endpoints, porcelain endpoints are meant to
be used in testing.

Public fields

method HTTP method

path HTTP path

target R function used for the endpoint

validate Logical, indicating if response validation is used

inputs Input control

state Possibly mutable state

returning An porcelain_returning object controlling the return type (content type, status code,
serialisation and validation information).

Methods

Public methods:

• porcelain_endpoint$new()

• porcelain_endpoint$run()

• porcelain_endpoint$request()

• porcelain_endpoint$plumber()

• porcelain_endpoint$create()

• porcelain_endpoint$clone()

Method new(): Create an endpoint

Usage:
porcelain_endpoint$new(method, path, target, ..., returning, validate = NULL)

Arguments:

method The HTTP method to support
path The server path for the endpoint
target An R function to run as the endpoint

8 porcelain_endpoint

... Additional parameters, currently representing inputs. You can use the functions porcelain_input_query,
porcelain_input_body_binary and porcelain_input_body_json to define inputs and
pass them into this method. The names used must match those in target.

returning Information about what the endpoint returns, as created by porcelain_returning

validate Logical, indicating if any validation (implemented by the validate_response argu-
ment) should be enabled. This should be set to FALSE in production environments. By de-
fault (if validate is NULL), we look at the value of the environment PORCELAIN_VALIDATE
- if true (case insensitive) then we will validate. This is intended to support easy use of
validation on continuous integration systems.

validate_response Optional function that throws an error of the processed body is "invalid".

Method run(): Run the endpoint. This will produce a standardised response object that contains
status_code, content_type, body (the serialised output as run through the process method and
returned by plumber) and data (the result of running the target function)

Usage:
porcelain_endpoint$run(...)

Arguments:

... Arguments passed through to the target function

Method request(): Test the endpoint. This creates a full plumber object and serves one request
to the endpoint. Argument are as passed through to porcelain’s $request() method, except that
method and path are automatically taken from the endpoint itself.

Usage:
porcelain_endpoint$request(...)

Arguments:

... Arguments passed through to the request method (query, body and content_type).

Method plumber(): Helper method for use with plumber - not designed for end-user use. This
is what gets called by plumber when the endpoint receives a request.

Usage:
porcelain_endpoint$plumber(req, res, ...)

Arguments:

req, res Conventional plumber request/response objects
... Additional arguments passed through to run

Method create(): Create a plumber endpoint

Usage:
porcelain_endpoint$create(envir, validate)

Arguments:

envir Environment as used by plumber (currently unclear)
validate Logical, allowing override of validation at the api level. This takes precedence over

the value set when creating the endpoint.

Method clone(): The objects of this class are cloneable with this method.

porcelain_input_body_binary 9

Usage:

porcelain_endpoint$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

porcelain_input_body_binary

Control for body parameters

Description

Control for body parameters. This might change. There are several types of HTTP bodies that we
want to consider here - the primary ones are a body uploaded in binary, the other is a json object.
In the latter we want to validate the body against a schema (at least if validation is used). In future
we might also support a form input here too.

Usage

porcelain_input_body_binary(name, content_type = NULL)

porcelain_input_body_json(name, schema = NULL, root = NULL, extract = NULL)

Arguments

name Name of the parameter

content_type Content type for the input. If not given, then application/octet-stream is
used. Provide a vector of valid types to allow any of the types to be passed.

schema The name of the json schema to use

root The root of the schema directory.

extract Optionally, the name of an element to extract from the json. If given, then the
body must be a json object (not an array, for example) and extract must refer
to a top-level key within it. We will extract the JSON string corresponding to
this key and forward that to the argument name. Deserialisation of the json is
still the target function’s responsibility but there will be less of it.

10 porcelain_logger

porcelain_input_query Control for query parameters

Description

Control for query parameters.

Usage

porcelain_input_query(..., .parameters = list(...))

Arguments

... Named arguments representing accepted parameters. The value of each must be
a type.

.parameters A list of named parameters to accept, instead of using ... - this interface is
considerably easier to program against if building an API programmatically,
avoiding the use of do.call.

Examples

porcelain::porcelain_input_query(number = "integer")

porcelain_logger Create logger

Description

Create a json-emitting logger, using the ’lgr’ package.

Usage

porcelain_logger(log_level = "info", name = NULL, path = NULL)

Arguments

log_level The level of detail to log to. See lgr::get_log_levels() for possible values;
this could be a string ("off", "info", "all", etc) or an integer level.

name The name of the logger. By default we use one derived from the package name,
though this may not always be accurate.

path Optionally, the path to log into. If not given then we log to the console.

Value

A "Logger" object (see lgr::Logger)

porcelain_package_endpoint 11

Examples

logger <- porcelain::porcelain_logger(name = "example")
logger$log("info", "hello")
logger$log("trace", "silent")

porcelain_package_endpoint

Find roxygen-defined endpoint

Description

Find an endpoint defined implicitly through roxygen comments (rather than explicitly via writing
porcelain_endpoint.

Usage

porcelain_package_endpoint(
package,
method,
path,
state = NULL,
validate = NULL

)

Arguments

package The name of the package to look in, provided as a string or as a namespace

method The HTTP method (i.e., verb), such as GET or POST, as a string

path The path of the method (e.g., /my/path)

state A list of state to bind into the method, if your endpoint requires any

validate Logical, indicating if the method should be created with schema validation en-
abled.

Value

The endpoint, a porcelain_endpoint object

12 porcelain_roclet

porcelain_returning Support for endpoint return types

Description

Support for describing and controlling expected return types. The high-level functions (porcelain_returning_json
and porcelain_returning_binary) should be generally used.

Usage

porcelain_returning(content_type, process, validate, status_code = 200L)

porcelain_returning_json(schema = NULL, root = NULL, status_code = 200L)

porcelain_returning_binary(status_code = 200L)

porcelain_returning_text(status_code = 200L)

Arguments

content_type The MIME content type for the endpoint, e.g. text/plain, application/json.

process A processing function that will convert the output of the handler function into
something of the type content_type. This should be independent of arguments
passed to the endpoint, so practically this is the final stage of serialisation.

validate A function that validates the return value and throws an error if the output is
not expected. This will only be used if the endpoint is created with validate =
TRUE.

status_code The HTTP status code that the endpoint will use on a successful return. The
default of 200 should be reasonable.

schema The name of the json schema to use

root The root of the schema directory.

porcelain_roclet Define API using roxygen tags

Description

A roclet for processing @porcelain tags within a package. This presents an automated declara-
tive approach to defining porcelain APIs using roxygen tags. When you roxygenise your pack-
age (e.g., with devtools::document() or roxygen2::roxygenise()) this roclet will create a file
R/porcelain.R within your package that will be included into your package API.

Usage

porcelain_roclet()

porcelain_state 13

Value

A roclet, used by roxygen2 (not typically called by users directly)

porcelain_state Bind state into an endpoint

Description

Bind state into an endpoint

Usage

porcelain_state(..., .state = list(...))

Arguments

... Named arguments representing state to bind; see Details.

.state A list of named state to bind, instead of using ... - this interface is considerably
easier to program against if building an API programmatically, avoiding the use
of do.call.

Details

This method allows state to be bound to the target function. Each element of ... (or .state) is
named with the argument to the target function being bound, and the value is the value that argument
will take. Once bound, the arguments to the target function may not be provided by an input.

The primary use case for this is to bind mutable state (database connections, etc) that may be shared
amongst different endpoints within an API.

porcelain_stop Throw an error from an endpoint

Description

Throw an error from an endpoint. This function is intended to allow target functions to throw nice
errors back through the API.

Usage

porcelain_stop(message, code = "ERROR", errors = NULL, status_code = 400L, ...)

14 porcelain_stop

Arguments

message The human-readable message of the error. Ignored if errors is given.

code Optional code for the error - if not given, then ERROR is used. Ignored if errors
is given.

errors A named list of errors - use this to signal multiple error conditions as key/value
pairs.

status_code The HTTP status code to use. The default (400) means "bad request" which
should be a reasonable catch-all for bad user data.

... Additional named args to be included as fields in the error response JSON. The
values must be in format ready for serialization to JSON using jsonlite::toJSON()
i.e. any unboxing using jsonlite::unbox() needs to already have been done.

Value

Nothing, as this function throws an error

Index

do.call, 10, 13

httr::VERB, 7

jsonlite::toJSON(), 14
jsonlite::unbox(), 14

lgr::get_log_levels(), 10
lgr::Logger, 10

plumber, 2
plumber::Hookable, 2
plumber::Plumber, 2
porcelain, 2, 8
porcelain_add_headers, 4
porcelain_background, 5
porcelain_endpoint, 3, 7, 11
porcelain_input_body_binary, 8, 9
porcelain_input_body_json, 8
porcelain_input_body_json

(porcelain_input_body_binary),
9

porcelain_input_query, 8, 10
porcelain_logger, 3, 10
porcelain_package_endpoint, 11
porcelain_returning, 7, 8, 12
porcelain_returning_binary

(porcelain_returning), 12
porcelain_returning_json

(porcelain_returning), 12
porcelain_returning_text

(porcelain_returning), 12
porcelain_roclet, 12
porcelain_state, 13
porcelain_stop, 13

15

	porcelain
	porcelain_add_headers
	porcelain_background
	porcelain_endpoint
	porcelain_input_body_binary
	porcelain_input_query
	porcelain_logger
	porcelain_package_endpoint
	porcelain_returning
	porcelain_roclet
	porcelain_state
	porcelain_stop
	Index

