
Package: rrq (via r-universe)
September 18, 2024

Title Simple Redis Queue

Version 0.7.19

Description Simple Redis queue in R.

License MIT + file LICENSE

LazyData true

URL https://mrc-ide.github.io/rrq, https://github.com/mrc-ide/rrq

BugReports https://github.com/mrc-ide/rrq/issues

Imports R6, callr (>= 3.7.0), cli, docopt, ids, logwatch (>= 0.1.1),
progress, redux (>= 1.0.0), rlang

Suggests knitr, markdown, mockery, processx, rmarkdown, testthat,
withr

RoxygenNote 7.3.1

Encoding UTF-8

Roxygen list(markdown = TRUE, r6 = TRUE)

Language en-GB

Config/testthat/edition 3

VignetteBuilder knitr

Remotes reside-ic/logwatch

Repository https://vimc.r-universe.dev

RemoteUrl https://github.com/mrc-ide/rrq

RemoteRef master

RemoteSha c5fc9478169eef7a3b37d79a3bd2952c6fbfc7d8

Contents
object_store . 3
object_store_offload_disk . 6
rrq_configure . 8
rrq_controller . 9

1

https://mrc-ide.github.io/rrq
https://github.com/mrc-ide/rrq
https://github.com/mrc-ide/rrq/issues

2 Contents

rrq_default_controller_set . 11
rrq_deferred_list . 12
rrq_destroy . 12
rrq_envir . 13
rrq_heartbeat . 14
rrq_heartbeat_kill . 16
rrq_message_get_response . 17
rrq_message_has_response . 18
rrq_message_response_ids . 19
rrq_message_send . 19
rrq_message_send_and_wait . 20
rrq_queue_length . 21
rrq_queue_list . 22
rrq_queue_remove . 22
rrq_task_cancel . 23
rrq_task_create_bulk_call . 23
rrq_task_create_bulk_expr . 25
rrq_task_create_call . 26
rrq_task_create_expr . 28
rrq_task_data . 30
rrq_task_delete . 31
rrq_task_exists . 32
rrq_task_info . 33
rrq_task_list . 34
rrq_task_log . 34
rrq_task_overview . 35
rrq_task_position . 36
rrq_task_preceeding . 37
rrq_task_progress . 37
rrq_task_progress_update . 38
rrq_task_result . 39
rrq_task_results . 40
rrq_task_retry . 41
rrq_task_status . 42
rrq_task_times . 43
rrq_task_wait . 44
rrq_worker . 45
rrq_worker_config . 48
rrq_worker_config_list . 50
rrq_worker_config_read . 50
rrq_worker_config_save . 51
rrq_worker_delete_exited . 52
rrq_worker_detect_exited . 53
rrq_worker_envir_set . 53
rrq_worker_exists . 54
rrq_worker_info . 55
rrq_worker_len . 55
rrq_worker_list . 56

object_store 3

rrq_worker_list_exited . 57
rrq_worker_load . 58
rrq_worker_log_tail . 58
rrq_worker_process_log . 59
rrq_worker_script . 60
rrq_worker_spawn . 61
rrq_worker_status . 62
rrq_worker_stop . 63
rrq_worker_task_id . 64
rrq_worker_wait . 65

Index 66

object_store rrq object store

Description

When you create a task with rrq and that task uses local variables these need to be copied over to
the worker that will evaluate the task. So, if we had

rrq_task_create_expr(f(a, b))

that would be the objects a and b from the context where rrq_task_create_expr was called.
There are a few considerations here:

• The names a and b are only useful in the immediate context of the controller at the point the
task is sent and so we need to store the values referenced by a and b without reference to the
names - we do this by naming the new values after their value. That is, the name becomes the
hash of the object, computed by rlang::hash(), as a form of content-addressable storage.

• When doing this we note that we might end up using the value referenced by a or b many
times in different tasks so we should not re-save the data more than needed, and we should not
necessarily delete it when a task is deleted unless nothing else uses that value.

• The objects might tiny or could be large; if small we tend to care about how quickly they can
be resolved (i.e., latency) and if large we need to be careful not to overfull Redis’ database as
it’s a memory-based system.

To make this robust and flexible, we use a object_store object, which will allow objects to be
stored either directly in Redis, or offloaded onto some "large" data store based on their size. Cur-
rently, we provide support only for offloading to disk, but in future hope to expand this.

When we create a value in the store (or reference a value that already exists) we assign a tag into
the database; this means that we have for a value with hash abc123 and tag def789

• prefix:data["abc123"] => [1] f5 26 a5 b7 26 93 b3 41 b7 d0 b0... (the data
stored, serialised into a redis hash by its hash, as a binary object.

• prefix:tag_hash:def789 => {abc123} (a set of hashes used by our tag)
• prefix:hash_tag:abc123 => {def789} (a set of tags that reference our hash)

https://en.wikipedia.org/wiki/Content-addressable_storage

4 object_store

If we also used the value with hash abc123 with tag fed987 this would look like

• prefix:data[abc123] => [1] f5 26 a5 b7 26 93 b3 41 b7 d0 b0... hash, as a binary
object.

• prefix:tag_hash:def789 => {abc123}

• prefix:tag_hash:fed987 => {abc123}

• prefix:hash_tag:abc123 => {def789, fed987}

As tags are dropped, then the references are dropped from the set prefix:hash_tag:abc123 and
when that set becomes empty then we can delete prefix:data[abc123] as simple form of refer-
ence counting.

For rrq we will use task_ids as a tag.

For dealing with large data, we "offload" large data into a secondary store. This replaces the
redis hash of hash => value with something else. Currently the only alternative we offer is
object_store_offload_disk which will save the binary representation of the object at the path
<path>/<hash> and will allow large values to be shared between controller and worker so long as
they share a common filesystem.

Details

Create an object store. Typically this is not used by end-users, and is used internally by rrq_controller

Methods

Public methods:

• object_store$new()

• object_store$list()

• object_store$tags()

• object_store$get()

• object_store$mget()

• object_store$set()

• object_store$mset()

• object_store$location()

• object_store$drop()

• object_store$destroy()

Method new(): Create a new object store (or connect to an existing one)

Usage:
object_store$new(con, prefix, max_size = Inf, offload = NULL)

Arguments:

con A redis connection object
prefix A key prefix to use; we will make a number of keys that start with this prefix.
max_size The maximum serialised object size, in bytes. If the serialised object is larger than

this size it will be placed into the offload storage, as provided by the offload argument. By
default this is Inf so all values will be stored in the redis database.

https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Reference_counting

object_store 5

offload An offload storage object. We provide one of these object_store_offload_disk,
which saves objects to on disk after serialisation). This interface is subject to change. If not
given but an object exceeds max_size an error will be thrown.

Method list(): List all hashes of data known to this data store

Usage:
object_store$list()

Method tags(): List all tags known to this data store

Usage:
object_store$tags()

Method get(): Get a single object by its hash

Usage:
object_store$get(hash)

Arguments:

hash a single hash to use

Method mget(): Get a number objects by their hashes. Unlike $get() this method accepts a
vector of hash (length 0, 1, or more than 1) and returns a list of the same length.

Usage:
object_store$mget(hash)

Arguments:

hash A vector of object hashes

Method set(): Set an object into the object store, returning the hash of that object.

Usage:
object_store$set(value, tag, serialize = TRUE)

Arguments:

value The object to save
tag A string used to associate with the object. When all tags that point to a particular object

value have been removed, then the object will be deleted from the store.
serialize Logical, indicating if the values should be serialised first. Typically this should

be TRUE, but for advanced use if you already have a serialised object you can pass that in
and set to FALSE. Note that only objects serialised with redux::object_to_bin (or with
serialize(..., xdr = FALSE)) will be accepted.

Method mset(): Set a number of objects into the store. Unlike $set(), this method sets a list
of objects into the store at once, and returns a character vector of hashes the same length as the
list of values.

Usage:
object_store$mset(value, tag, serialize = TRUE)

Arguments:

value A list of objects to save

6 object_store_offload_disk

tag A string used to associate with the object. When all tags that point to a particular object
value have been removed, then the object will be deleted from the store. The same tag is
used for all objects.

serialize Logical, indicating if the values should be serialised first. Typically this should
be TRUE, but for advanced use if you already have a serialised object you can pass that in
and set to FALSE. Note that only objects serialised with redux::object_to_bin (or with
serialize(..., xdr = FALSE)) will be accepted.

Method location(): Return the storage locations of a set of hashes. Currently the location may
be redis (stored directly in the redis server), offload (stored in the offload storage) or NA (if not
found, and if error = FALSE).

Usage:
object_store$location(hash, error = TRUE)

Arguments:

hash A vector of hashes
error A logical, indicating if we should throw an error if a hash is unknown

Method drop(): Delete tags from the store. This will dissociate the tags from any hashes they
references and if that means that no tag points to a hash then the data at that hash will be removed.
We return (invisibly) a character vector of any dropped hashes.

Usage:
object_store$drop(tag)

Arguments:

tag Vector of tags to drop

Method destroy(): Remove all data from the store, and all the stores metadata

Usage:
object_store$destroy()

object_store_offload_disk

Disk-based offload

Description

Disk-based offload

Disk-based offload

Details

A disk-based offload for object_store. This is not intended at all for direct user-use.

object_store_offload_disk 7

Methods

Public methods:
• object_store_offload_disk$new()

• object_store_offload_disk$mset()

• object_store_offload_disk$mget()

• object_store_offload_disk$mdel()

• object_store_offload_disk$list()

• object_store_offload_disk$destroy()

Method new(): Create the store

Usage:
object_store_offload_disk$new(path)

Arguments:
path A directory name to store objects in. It will be created if it does not yet exist.

Method mset(): Save a number of values to disk

Usage:
object_store_offload_disk$mset(hash, value)

Arguments:
hash A character vector of object hashes
value A list of serialised objects (each of which is a raw vector)

Method mget(): Retrieve a number of objects from the store

Usage:
object_store_offload_disk$mget(hash)

Arguments:
hash A character vector of hashes of the objects to return. The objects will be deserialised

before return.

Method mdel(): Delete a number of objects from the store

Usage:
object_store_offload_disk$mdel(hash)

Arguments:
hash A character vector of hashes to remove

Method list(): List hashes stored in this offload store

Usage:
object_store_offload_disk$list()

Method destroy(): Completely delete the store (by deleting the directory)

Usage:
object_store_offload_disk$destroy()

8 rrq_configure

rrq_configure Configure rrq

Description

Configure rrq options. This function must be called before either a controller or worker connects
to a queue, as the options will apply to both. The function may only be called once on a given
queue as there is no facility (yet) to update options. Currently the options concern only storage, and
specifically how larger objects will be saved (using object_store.

Usage

rrq_configure(
queue_id,
con = redux::hiredis(),
...,
store_max_size = Inf,
offload_path = NULL

)

Arguments

queue_id The queue id; the same as you would pass to rrq_controller

con A redis connection

... Additional arguments - this must be empty. This argument exists so that all
additional arguments must be passed by name.

store_max_size The maximum object size, in bytes, before being moved to the offload store. If
given, then larger data will be saved in offload_path (using object_store_offload_disk)

offload_path The path to create an offload store at (passed to object_store_offload_disk).
The directory will be created if it does not exist. If not given (or NULL) but
store_max_size is finite, then trying to save large objects will throw an error.

Value

Invisibly, a list with processed configuration information

Storage

Every time that a task is saved, or a task is completed, results are saved into the Redis database.
Because Redis is an in-memory database, it’s not a great idea to save very large objects into it (if
you ran 100 jobs in parallel and each saved a 2GB object you’d likely take down your redis server).
In addition, redux does not support directly saving objects larger than 2^31 - 1 bytes into Redis.
So, for some use cases we need to consider where to store larger objects.

The strategy here is to "offload" the larger objects - bigger than some user-given size - onto some
other storage system. Currently the only alternative supported is a disk store (object_store_offload_disk)

rrq_controller 9

but we hope to expand this later. So if your task returns a 3GB object then we will spill that to disk
rather than failing to save that into Redis.

How big is an object? We serialise the object (redux::object_to_bin just wraps serialize)
which creates a vector of bytes and that is saved into the database. To get an idea of how large things
are you can do: length(redux::object_to_bin(your_object)). At the time this documentation
was written, mtcars was 3807 bytes, and a million random numbers was 8,000,031 bytes. It’s
unlikely that a store_max_size of less than 1MB will be sensible.

Examples

tmp <- tempfile()
dir.create(tmp)
rrq_configure("rrq:offload", store_max_size = 100000, offload_path = tmp)
obj <- rrq_controller("rrq:offload")
x <- runif(100000)
t <- rrq_task_create_expr(mean(x), controller = obj)
dir(tmp)
file.size(dir(tmp, full.names = TRUE))
rrq_destroy(controller = obj)

rrq_controller Create rrq controller

Description

Create a new controller. This is the new interface that will replace rrq_controller soon, at which
point it will rename back to rrq_controller.

Usage

rrq_controller(
queue_id,
con = redux::hiredis(),
timeout_task_wait = NULL,
follow = NULL,
check_version = TRUE

)

Arguments

queue_id An identifier for the queue. This will prefix all keys in redis, so a prefix might
be useful here depending on your use case (e.g. rrq:<user>:<id>)

con A redis connection. The default tries to create a redis connection using default
ports, or environment variables set as in redux::hiredis()

10 rrq_controller

timeout_task_wait

An optional default timeout to use when waiting for tasks with rrq_task_wait. If
not given, then we fall back on the global option rrq.timeout_task_wait, and
if that is not set, we wait forever (i.e., timeout_task_wait = Inf).

follow An optional default logical to use for tasks that may (or may not) be retried. If
not given we fall back on the global option rrq.follow, and if that is not set
then TRUE (i.e., we do follow). The value follow = TRUE is potentially slower
than follow = FALSE for some operations because we need to dereference every
task id. If you never use rrq_task_retry then this dereference never has an effect
and we can skip it. See vignette("fault-tolerance") for more information.

check_version Logical, indicating if we should check the schema version. You can pass FALSE
here to continue even where the schema version is incompatible, though any
subsequent actions may lead to corruption.

Value

An rrq_controller object, which is opaque.

Task lifecycle

• A task is queued with $enqueue(), at which point it becomes PENDING

• Once a worker selects the task to run, it becomes RUNNING

• If the task completes successfully without error it becomes COMPLETE

• If the task throws an error, it becomes ERROR

• If the task was cancelled (e.g., via $task_cancel()) it becomes CANCELLED

• If the task is killed by an external process, crashes or the worker dies (and is running a heart-
beat) then the task becomes DIED.

• The status of an unknown task is MISSING

• Tasks in any terminal state (except IMPOSSIBLE) may be retried with task_retry at which
point they become MOVED, see vignette("fault-tolerance") for details

Worker lifecycle

• A worker appears and is IDLE

• When running a task it is BUSY

• If it receives a PAUSE message it becomes PAUSED until it receives a RESUME message

• If it exits cleanly (e.g., via a STOP message or a timeout) it becomes EXITED

• If it crashes and was running a heartbeat, it becomes LOST

Messages

Most of the time workers process tasks, but you can also send them "messages". Messages take
priority over tasks, so if a worker becomes idle (by coming online or by finishing a task) it will
consume all available messages before starting on a new task, even if both are available.

Each message has a "command" and may have "arguments" to that command. The supported mes-
sages are:

rrq_default_controller_set 11

• PING (no args): "ping" the worker, if alive it will respond with "PONG"

• ECHO (accepts an argument of a string): Print a string to the terminal and log of the worker.
Will respond with OK once the message has been printed.

• EVAL (accepts a string or a quoted expression): Evaluate an arbitrary R expression on the
worker. Responds with the value of this expression.

• STOP (accepts a string to print as the worker exits, defaults to "BYE"): Tells the worker to
stop.

• INFO (no args): Returns information about the worker (versions of packages, hostname, pid,
etc).

• PAUSE (no args): Tells the worker to stop accepting tasks (until it receives a RESUME message).
Messages are processed as normal.

• RESUME (no args): Tells a paused worker to resume accepting tasks.

• REFRESH (no args): Tells the worker to rebuild their environment with the create method.

• TIMEOUT_SET (accepts a number, representing seconds): Updates the worker timeout - the
length of time after which it will exit if it has not processed a task.

• TIMEOUT_GET (no args): Tells the worker to respond with its current timeout.

Examples

Create a new controller; the id will be specific to your
application. Here, we use 'rrq:example'
obj <- rrq_controller("rrq:example")

Create a task for this controller to work on:
t <- rrq_task_create_expr(runif(10), controller = obj)

Wait for the task to complete
rrq_task_wait(t, controller = obj)

Fetch the task's result
rrq_task_result(t, controller = obj)

rrq_default_controller_set

Register default controller

Description

Set or clear a default controller for use with rrq functions. You will want to use this to avoid passing
controller in as a named argument to every function.

12 rrq_destroy

Usage

rrq_default_controller_set(controller)

rrq_default_controller_clear()

Arguments

controller An rrq_controller object, or NULL to clear the default controller (equivalent to
using rrq_default_controller_clear)

Value

Invisibly, the previously set default controller (or NULL if none was set)

rrq_deferred_list List deferred tasks

Description

Return deferred tasks and what they are waiting on. Note this is in an arbitrary order, tasks will be
added to the queue as their dependencies are satisfied.

Usage

rrq_deferred_list(controller = NULL)

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

rrq_destroy Destroy queue

Description

Entirely destroy a queue, by deleting all keys associated with it from the Redis database. This is a
very destructive action and cannot be undone.

Usage

rrq_destroy(
delete = TRUE,
worker_stop_type = "message",
timeout_worker_stop = 0,
controller = NULL

)

rrq_envir 13

Arguments

delete Either TRUE (the default) indicating that the keys should be immediately deleted.
Alternatively, provide an integer value and the keys will instead be marked for
future deletion by "expiring" after this many seconds, using Redis’ EXPIRE com-
mand.

worker_stop_type

Passed to rrq_worker_stop(); Can be one of "message", "kill" or "kill_local".
The "kill" method requires that the workers are using a heartbeat, and "kill_local"
requires that the workers are on the same machine as the controller. However,
these may be faster to stop workers than "message", which will wait until any
task is finished.

timeout_worker_stop

A timeout to pass to the worker to respond the request to stop. See worker_stop’s
timeout argument for details.

controller The controller to destroy

rrq_envir Create simple worker environments

Description

Helper function for creating a worker environment. This function exists to create a function suitable
for passing to rrq_worker_envir_set for the common case where the worker should source some R
scripts and/or load some packages on startup. This is a convenience wrapper around defining your
own function, covering the most simple case. If you need more flexibility you should write your
own function.

Usage

rrq_envir(packages = NULL, sources = NULL)

Arguments

packages An optional character vector of

sources An optional character vector of scripts to read. Typically these will contain just
function definitions but you might read large data objects here too.

Value

A function suitable for passing to rrq_worker_envir_set, which can set (or update) the environment
for your workers.

14 rrq_heartbeat

rrq_heartbeat Create a heartbeat instance

Description

Create a heartbeat instance

Create a heartbeat instance

Details

Create a heartbeat instance. This can be used by running obj$start() which will reset the TTL
(Time To Live) on key every period seconds (don’t set this too high). If the R process dies, then
the key will expire after 3 * period seconds (or set expire) and another application can tell that
this R instance has died.

Methods

Public methods:

• rrq_heartbeat$new()

• rrq_heartbeat$is_running()

• rrq_heartbeat$start()

• rrq_heartbeat$stop()

• rrq_heartbeat$format()

Method new(): Create a heartbeat object

Usage:
rrq_heartbeat$new(
key,
period,
expire = 3 * period,
value = expire,
config = NULL,
start = TRUE,
timeout = 10

)

Arguments:

key Key to use. Once the heartbeat starts it will create this key and set it to expire after expiry
seconds.

period Timeout period (in seconds)
expire Key expiry time (in seconds)
value Value to store in the key. By default it stores the expiry time, so the time since last

heartbeat can be computed. This will be converted to character with as.character before
saving into Redis

rrq_heartbeat 15

config Configuration parameters passed through to redux::redis_config. Provide as either
a named list or a redis_config object. This allows host, port, password, db, etc all to be
set.

start Should the heartbeat be started immediately?
timeout Time, in seconds, to wait for the heartbeat to appear. It should generally appear very

quickly (within a second unless your connection is very slow) so this can be generally left
alone.

Method is_running(): Report if heartbeat process is running. This will be TRUE if the process
has been started and has not stopped.

Usage:
rrq_heartbeat$is_running()

Method start(): Start the heartbeat process. An error will be thrown if it is already running.

Usage:
rrq_heartbeat$start()

Method stop(): Stop the heartbeat process

Usage:
rrq_heartbeat$stop(wait = TRUE)

Arguments:

wait Logical, indicating if we should wait until the heartbeat process terminates (should take
only a fraction of a second)

Method format(): Format method, used by R6 to nicely print the object

Usage:
rrq_heartbeat$format(...)

Arguments:

... Additional arguments, currently ignored

Examples

if (redux::redis_available()) {
rand_str <- function() {
paste(sample(letters, 20, TRUE), collapse = "")

}
key <- sprintf("rrq:heartbeat:%s", rand_str())
h <- rrq::rrq_heartbeat$new(key, 1, expire = 2)
con <- redux::hiredis()

The heartbeat key exists
con$EXISTS(key)

And has an expiry of less than 2000ms
con$PTTL(key)

We can manually stop the heartbeat, and 2s later the key will

16 rrq_heartbeat_kill

stop existing
h$stop()

Sys.sleep(2)
con$EXISTS(key) # 0

This is required to close any processes opened by this
example, normally you would not need this.
processx:::supervisor_kill()

}

rrq_heartbeat_kill Kill a process running a heartbeat

Description

Send a kill signal (typically SIGTERM) to terminate a process that is running a heartbeat. This is
used by rrq_controller in order to tear down workers, even if they are processing a task. When
a heartbeat process is created, in its main loop it will listen for requests to kill via this function and
will forward them to the worker. This is primarily useful where workers are on a different physical
machine to the controller where tools::pskill() cannot be used.

Usage

rrq_heartbeat_kill(con, key, signal = tools::SIGTERM)

Arguments

con A hiredis object

key The heartbeat key

signal A signal to send (typically tools::SIGTERM for a "polite" shutdown)

Examples

if (redux::redis_available()) {
rand_str <- function() {
paste(sample(letters, 20, TRUE), collapse = "")

}
Suppose we have a process that exposes a heartbeat running on
this key:
key <- sprintf("rrq:heartbeat:%s", rand_str())

We can send it a SIGTERM signal over redis using:
con <- redux::hiredis()
rrq::rrq_heartbeat_kill(con, key, tools::SIGTERM)

}

rrq_message_get_response 17

rrq_message_get_response

Get message response

Description

Get response to messages, waiting until the message has been responded to.

Usage

rrq_message_get_response(
message_id,
worker_ids = NULL,
named = TRUE,
delete = FALSE,
timeout = 0,
time_poll = 0.5,
progress = NULL,
controller = NULL

)

Arguments

message_id The message id

worker_ids Optional vector of worker ids. If NULL then all active workers are used (note that
this may differ to the set of workers that the message was sent to!)

named Logical, indicating if the return value should be named by worker id.

delete Logical, indicating if messages should be deleted after retrieval

timeout Integer, representing seconds to wait until the response has been received. An
error will be thrown if a response has not been received in this time.

time_poll If timeout is greater than zero, this is the polling interval used between redis
calls. Increasing this reduces network load but increases the time that may be
waited for.

progress Optional logical indicating if a progress bar should be displayed. If NULL we
fall back on the value of the global option rrq.progress, and if that is unset
display a progress bar if in an interactive session.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Examples

obj <- rrq_controller("rrq:example")
id <- rrq_message_send("PING", controller = obj)
rrq_message_get_response(id, timeout = 5, controller = obj)

18 rrq_message_has_response

rrq_message_has_response

Detect if message has response

Description

Detect if a response is available for a message

Usage

rrq_message_has_response(
message_id,
worker_ids = NULL,
named = TRUE,
controller = NULL

)

Arguments

message_id The message id

worker_ids Optional vector of worker ids. If NULL then all active workers are used (note that
this may differ to the set of workers that the message was sent to!)

named Logical, indicating if the return vector should be named

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A logical vector, possibly named (depending on the named argument)

Examples

obj <- rrq_controller("rrq:example")

id <- rrq_message_send("PING", controller = obj)
rrq_message_has_response(id, controller = obj)
rrq_message_get_response(id, timeout = 5, controller = obj)
rrq_message_has_response(id, controller = obj)

rrq_message_response_ids 19

rrq_message_response_ids

Return ids for messages with responses for a particular worker.

Description

Return ids for messages with responses for a particular worker.

Usage

rrq_message_response_ids(worker_id, controller = NULL)

Arguments

worker_id The worker id

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector of ids

Examples

obj <- rrq_controller("rrq:example")
w <- rrq_worker_list(controller = obj)
rrq_message_send("PING", controller = obj)

rrq_message_send Send message to workers

Description

Send a message to workers. Sending a message returns a message id, which can be used to poll for
a response with the other rrq_message_* functions. See vignette("messages") for details for
the messaging interface.

Usage

rrq_message_send(command, args = NULL, worker_ids = NULL, controller = NULL)

20 rrq_message_send_and_wait

Arguments

command A command, such as PING, PAUSE; see the Messages section of the Details for
al messages.

args Arguments to the command, if supported

worker_ids Optional vector of worker ids to send the message to. If NULL then the message
will be sent to all active workers.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Invisibly, a single identifier

Examples

obj <- rrq_controller("rrq:example")

id <- rrq_message_send("PING", controller = obj)
rrq_message_get_response(id, timeout = 5, controller = obj)

rrq_message_send_and_wait

Send a message and wait for response

Description

Send a message and wait for responses. This is a helper function around rrq_message_send() and
rrq_message_get_response().

Usage

rrq_message_send_and_wait(
command,
args = NULL,
worker_ids = NULL,
named = TRUE,
delete = TRUE,
timeout = 600,
time_poll = 0.05,
progress = NULL,
controller = NULL

)

rrq_queue_length 21

Arguments

command A command, such as PING, PAUSE; see the Messages section of the Details for
al messages.

args Arguments to the command, if supported
worker_ids Optional vector of worker ids to send the message to. If NULL then the message

will be sent to all active workers.
named Logical, indicating if the return value should be named by worker id.
delete Logical, indicating if messages should be deleted after retrieval
timeout Integer, representing seconds to wait until the response has been received. An

error will be thrown if a response has not been received in this time.
time_poll If timeout is greater than zero, this is the polling interval used between redis

calls. Increasing this reduces network load but increases the time that may be
waited for.

progress Optional logical indicating if a progress bar should be displayed. If NULL we
fall back on the value of the global option rrq.progress, and if that is unset
display a progress bar if in an interactive session.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

The message response

Examples

obj <- rrq_controller("rrq:example")
rrq_message_send_and_wait("PING", controller = obj)

rrq_queue_length Queue length

Description

Returns the length of the queue (the number of tasks waiting to run). This is the same as the length
of the value returned by rrq_queue_list.

Usage

rrq_queue_length(queue = NULL, controller = NULL)

Arguments

queue The name of the queue to query (defaults to the "default" queue).
controller The controller to use. If not given (or NULL) we’ll use the controller registered

with rrq_default_controller_set().

22 rrq_queue_remove

Value

A number

rrq_queue_list List queue contents

Description

Returns the keys in the task queue.

Usage

rrq_queue_list(queue = NULL, controller = NULL)

Arguments

queue The name of the queue to query (defaults to the "default" queue).

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

rrq_queue_remove Remove task ids from a queue

Description

Remove task ids from a queue.

Usage

rrq_queue_remove(task_ids, queue = NULL, controller = NULL)

Arguments

task_ids Task ids to remove

queue The name of the queue to query (defaults to the "default" queue).

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

rrq_task_cancel 23

rrq_task_cancel Cancel a task

Description

Cancel a single task. If the task is PENDING it will be unqueued and the status set to CANCELED. If
RUNNING then the task will be stopped if it was set to run in a separate process (i.e., queued with
separate_process = TRUE). Dependent tasks will be marked as impossible.

Usage

rrq_task_cancel(task_id, wait = TRUE, timeout_wait = 10, controller = NULL)

Arguments

task_id Id of the task to cancel

wait Wait for the task to be stopped, if it was running.

timeout_wait Maximum time, in seconds, to wait for the task to be cancelled by the worker.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Nothing if successfully cancelled, otherwise throws an error with task_id and status e.g. Task 123
is not running (MISSING)

Examples

obj <- rrq_controller("rrq:example")

t <- rrq_task_create_expr(Sys.sleep(4), separate_process = TRUE,
controller = obj)

Sys.sleep(0.5)
rrq_task_cancel(t, controller = obj)
rrq_task_status(t, controller = obj)

rrq_task_create_bulk_call

Create bulk tasks from a call

Description

Create a bulk set of tasks based on applying a function over a vector or data.frame. This is the
bulk equivalent of rrq_task_create_call, in the same way that rrq_task_create_bulk_expr is a bulk
version of rrq_task_create_expr.

24 rrq_task_create_bulk_call

Usage

rrq_task_create_bulk_call(
fn,
data,
args = NULL,
queue = NULL,
separate_process = FALSE,
timeout_task_run = NULL,
depends_on = NULL,
controller = NULL

)

Arguments

fn The function to call
data The data to apply the function over. This can be a vector or list, in which case

we act like lapply and apply fn to each element in turn. Alternatively, this can
be a data.frame, in which case each row is taken as a set of arguments to fn.
Note that if data is a data.frame then all arguments to fn are named.

args Additional arguments to fn, shared across all calls. These must be named. If you
are using a data.frame for data, you’d probably be better off adding additional
columns that don’t vary across rows, but the end result is the same.

queue The queue to add the task to; if not specified the "default" queue (which all
workers listen to) will be used. If you have configured workers to listen to more
than one queue you can specify that here. Be warned that if you push jobs onto
a queue with no worker, it will queue forever.

separate_process

Logical, indicating if the task should be run in a separate process on the worker.
If TRUE, then the worker runs the task in a separate process using the callr
package. This means that the worker environment is completely clean, subse-
quent runs are not affected by preceding ones. The downside of this approach
is a considerable overhead in starting the external process and transferring data
back.

timeout_task_run

Optionally, a maximum allowed running time, in seconds. This parameter only
has an effect if separate_process is TRUE. If given, then if the task takes longer
than this time it will be stopped and the task status set to TIMEOUT.

depends_on Vector or list of IDs of tasks which must have completed before this job can
be run. Once all dependent tasks have been successfully run, this task will get
added to the queue. If the dependent task fails then this task will be removed
from the queue.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A vector of task identifiers; this will have the length as data has rows if it is a data.frame, other-
wise it has the same length as data

rrq_task_create_bulk_expr 25

Examples

obj <- rrq_controller("rrq:example")

d <- data.frame(n = 1:10, lambda = rgamma(10, 5))
ts <- rrq_task_create_bulk_call(rpois, d, controller = obj)
rrq_task_wait(ts, controller = obj)
rrq_task_results(ts, controller = obj)

rrq_task_create_bulk_expr

Create bulk tasks from an expression

Description

Create a bulk set of tasks. Variables in data take precedence over variables in the environment in
which expr was created. There is no "pronoun" support yet (see rlang docs). Use !! to pull a
variable from the environment if you need to, but be careful not to inject something really large
(e.g., any vector really) or you’ll end up with a revolting expression and poor backtraces.

Usage

rrq_task_create_bulk_expr(
expr,
data,
queue = NULL,
separate_process = FALSE,
timeout_task_run = NULL,
depends_on = NULL,
controller = NULL

)

Arguments

expr An expression, as for rrq_task_create_expr

data Data that you wish to inject row-wise into the expression

queue The queue to add the task to; if not specified the "default" queue (which all
workers listen to) will be used. If you have configured workers to listen to more
than one queue you can specify that here. Be warned that if you push jobs onto
a queue with no worker, it will queue forever.

separate_process

Logical, indicating if the task should be run in a separate process on the worker.
If TRUE, then the worker runs the task in a separate process using the callr
package. This means that the worker environment is completely clean, subse-
quent runs are not affected by preceding ones. The downside of this approach
is a considerable overhead in starting the external process and transferring data
back.

26 rrq_task_create_call

timeout_task_run

Optionally, a maximum allowed running time, in seconds. This parameter only
has an effect if separate_process is TRUE. If given, then if the task takes longer
than this time it will be stopped and the task status set to TIMEOUT.

depends_on Vector or list of IDs of tasks which must have completed before this job can
be run. Once all dependent tasks have been successfully run, this task will get
added to the queue. If the dependent task fails then this task will be removed
from the queue.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector with task identifiers; this will have a length equal to the number of row in data

Examples

obj <- rrq_controller("rrq:example")

Create 10 tasks:
ts <- rrq_task_create_bulk_expr(sqrt(x), data.frame(x = 1:10),

controller = obj)
rrq_task_wait(ts, controller = obj)
rrq_task_results(ts, controller = obj)

Note that there is no automatic simplification when fetching
results, you might use unlist or vapply to turn this into a
numeric vector rather than a list

The data.frame substituted in may have multiple columns
representing multiple variables to substitute into the
expression
d <- expand.grid(a = 1:4, b = 1:4)
ts <- rrq_task_create_bulk_expr(a * b, d, controller = obj)
rrq_task_wait(ts, controller = obj)
rrq_task_results(ts, controller = obj)

rrq_task_create_call Create a task from a call

Description

Create a task based on a function call. This is fairly similar to callr::r, and forms the basis of
lapply()-like task submission. Sending a call may have slightly different semantics than you ex-
pect if you send a closure (a function that binds data), and we may change behaviour here until we
find a happy set of compromises. See Details for more on this. The expression rrq_task_create_call(f,
list(a, b, c)) is similar to rrq_task_create_expr(f(a, b, c)), use whichever you prefer.

rrq_task_create_call 27

Usage

rrq_task_create_call(
fn,
args,
queue = NULL,
separate_process = FALSE,
timeout_task_run = NULL,
depends_on = NULL,
controller = NULL

)

Arguments

fn The function to call

args A list of arguments to pass to the function

queue The queue to add the task to; if not specified the "default" queue (which all
workers listen to) will be used. If you have configured workers to listen to more
than one queue you can specify that here. Be warned that if you push jobs onto
a queue with no worker, it will queue forever.

separate_process

Logical, indicating if the task should be run in a separate process on the worker.
If TRUE, then the worker runs the task in a separate process using the callr
package. This means that the worker environment is completely clean, subse-
quent runs are not affected by preceding ones. The downside of this approach
is a considerable overhead in starting the external process and transferring data
back.

timeout_task_run

Optionally, a maximum allowed running time, in seconds. This parameter only
has an effect if separate_process is TRUE. If given, then if the task takes longer
than this time it will be stopped and the task status set to TIMEOUT.

depends_on Vector or list of IDs of tasks which must have completed before this job can
be run. Once all dependent tasks have been successfully run, this task will get
added to the queue. If the dependent task fails then this task will be removed
from the queue.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Details

Things are pretty unambiguous when you pass in a function from a package, especially when you
refer to that package with its namespace (e.g. pkg::fn).

If you pass in the name without a namespace from a package that you have loaded with library()
locally but you have not loaded with library within your worker environment, we may not do the
right thing and you may see your task fail, or find a different function with the same name.

If you pass in an anonymous function (e.g., function(x) x + 1) we may or may not do the right
thing with respect to environment capture. We never capture the global environment so if your func-
tion is a closure that tries to bind a symbol from the global environment it will not work. Like with

28 rrq_task_create_expr

callr::r, anonymous functions will be easiest to think about where they are fully self contained
(i.e., all inputs to the functions come through args). If you have bound a local environment, we
may do slightly better, but semantics here are undefined and subject to change.

R does some fancy things with function calls that we don’t try to replicate. In particular you may
have noticed that this works:

c <- "x"
c(c, c) # a vector of two "x"'s

You can end up in this situation locally with:

f <- function(x) x + 1
local({
f <- 1
f(f) # 2

})

this is because when R looks for the symbol for the call it skips over non-function objects. We don’t
reconstruct environment chains in exactly the same way as you would have locally so this is not
possible.

Value

A task identifier (a 32 character hex string) that you can pass in to other rrq functions, notably
rrq_task_status() and rrq_task_result()

Examples

obj <- rrq_controller("rrq:example")
t <- rrq_task_create_call(sqrt, list(2), controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

rrq_task_create_expr Create a task based on an expression

Description

Create a task based on an expression. The expression passed as expr will typically be a function
call (e.g., f(x)). We will analyse the expression and find all variables that you reference (in the
case of f(x) this is x) and combine this with the function name to run on the worker. If x cannot be
found in your calling environment we will error.

rrq_task_create_expr 29

Usage

rrq_task_create_expr(
expr,
queue = NULL,
separate_process = FALSE,
timeout_task_run = NULL,
depends_on = NULL,
controller = NULL

)

Arguments

expr The expression, does not need quoting. See Details.

queue The queue to add the task to; if not specified the "default" queue (which all
workers listen to) will be used. If you have configured workers to listen to more
than one queue you can specify that here. Be warned that if you push jobs onto
a queue with no worker, it will queue forever.

separate_process

Logical, indicating if the task should be run in a separate process on the worker.
If TRUE, then the worker runs the task in a separate process using the callr
package. This means that the worker environment is completely clean, subse-
quent runs are not affected by preceding ones. The downside of this approach
is a considerable overhead in starting the external process and transferring data
back.

timeout_task_run

Optionally, a maximum allowed running time, in seconds. This parameter only
has an effect if separate_process is TRUE. If given, then if the task takes longer
than this time it will be stopped and the task status set to TIMEOUT.

depends_on Vector or list of IDs of tasks which must have completed before this job can
be run. Once all dependent tasks have been successfully run, this task will get
added to the queue. If the dependent task fails then this task will be removed
from the queue.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Details

Alternatively you may provide a multiline statement by using {} to surround multiple lines, such
as:

task_create_expr({
x <- runif(1)
f(x)

}, ...)

in this case, we apply a simple heuristic to work out that x is locally assigned and should not be
saved with the expression.

30 rrq_task_data

See Also

rrq_task_create_call for creating a task from a function and arguments to the function, and rrq_task_create_bulk_expr
for creating many tasks from a call and a data.frame

Examples

obj <- rrq_controller("rrq:example")

Simple use of the function to create a task based on a function call
t <- rrq_task_create_expr(sqrt(2), controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

The expression can contain calls to other variables, and these
will be included in the call:
a <- 3
t <- rrq_task_create_expr(sqrt(a), controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

You can pass in an expression _as_ a symbol too:
expr <- quote(sqrt(4))
t <- rrq_task_create_expr(expr, controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

If you queue tasks into separate processes you can use a timeout
to kill the task if it takes too long:
t <- rrq_task_create_expr(Sys.sleep(3),

separate_process = TRUE,
timeout_task_run = 1,
controller = obj)

rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

rrq_task_data Fetch internal task data

Description

Fetch internal data about a task (expert use only)

Usage

rrq_task_data(task_id, controller = NULL)

rrq_task_delete 31

Arguments

task_id A single task identifier

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Internal data, structures subject to change

Examples

obj <- rrq_controller("rrq:example")

t <- rrq_task_create_expr(runif(1), controller = obj)
rrq_task_data(t, controller = obj)

x <- 10
y <- 20
t <- rrq_task_create_expr(x + y, controller = obj)
rrq_task_data(t, controller = obj)

rrq_task_delete Delete tasks

Description

Delete one or more tasks

Usage

rrq_task_delete(task_ids, check = TRUE, controller = NULL)

Arguments

task_ids Vector of task ids to delete

check Logical indicating if we should check that the tasks are not running. Deleting
running tasks is unlikely to result in desirable behaviour.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Nothing, called for side effects only

32 rrq_task_exists

Examples

obj <- rrq_controller("rrq:example:delete")

ts <- rrq_task_create_bulk_call(sqrt, 1:10, controller = obj)
rrq_task_exists(ts, controller = obj)

rrq_task_delete(ts[1:5], controller = obj)
rrq_task_exists(ts, controller = obj)

rrq_task_delete(ts, controller = obj)
rrq_task_exists(ts, controller = obj)

rrq_task_exists Test if tasks exist

Description

Test if task ids exist (i.e., are known to this controller). Nonexistent tasks may be deleted, known to
a different controller or just never have existed.

Usage

rrq_task_exists(task_ids, named = FALSE, controller = NULL)

Arguments

task_ids Vector of task ids to check

named Logical, indicating if the return value should be named with the task ids; as these
are quite long this can make the value a little awkward to work with.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A logical vector the same length as task_ids; TRUE where the task exists, FALSE otherwise. If named
was TRUE, then this vector is named with task_ids.

Examples

obj <- rrq_controller("rrq:example")

t1 <- rrq_task_create_expr(runif(1), controller = obj)
rrq_task_exists(t1, controller = obj)

t2 <- ids::random_id()
rrq_task_exists(t2, controller = obj)

rrq_task_info 33

rrq_task_info Fetch task information

Description

Fetch information about a task. This currently includes information about where a task is (or was)
running and information about any retry chain, but will expand in future. The format of the output
here is subject to change (and will probably get a nice print method) but the values present in the
output will be included in any future update.

Usage

rrq_task_info(task_id, controller = NULL)

Arguments

task_id A single task identifier

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A list, format currently subject to change

Examples

obj <- rrq_controller("rrq:example")

Get information about a task
t <- rrq_task_create_expr(runif(1), controller = obj)
rrq_task_info(t, controller = obj)

If the task has been retried, the retry chain is shown
rrq_task_wait(t, controller = obj)
rrq_task_retry(t, controller = obj)
rrq_task_info(t, controller = obj)

If the task was queued onto a separate process, then this
information is shown
rrq_task_create_expr(1 + 1, separate_process = TRUE, timeout_task_run = 60,

controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_info(t, controller = obj)

34 rrq_task_log

rrq_task_list List all tasks

Description

List all tasks. This may be a lot of tasks, and so can be quite slow to execute.

Usage

rrq_task_list(controller = NULL)

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector

Examples

obj <- rrq_controller("rrq:example")

rrq_task_list(controller = obj)

rrq_task_log Fetch task logs

Description

Fetch logs from tasks that were queued into separate processes (e.g., with rrq_task_create_expr
using separate_process = TRUE). It is not knowable if a task definitely produce logs - if you have
a mixture of workers that do enable task logs and some that don’t, then it will depend on the worker
that picks it up if logging will be enabled. Don’t do this though and you should be fine.

Usage

rrq_task_log(task_id, controller = NULL)

Arguments

task_id A single task identifier

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

rrq_task_overview 35

Value

A character vector of logs, or NULL if no log is present yet. If logging is not enabled for this task,
we throw an error. Empty logs can be distinguished from "no logs yet", as they will return an empty
character vector (character(0)).

Examples

obj <- rrq_controller("rrq:example")

t <- rrq_task_create_expr(message("hello!"), separate_process = TRUE,
controller = obj)

rrq_task_wait(t, controller = obj)
rrq_task_log(t, controller = obj)

rrq_task_overview High level task overview

Description

Provide a high level overview of task statuses for a set of task ids, being the count in major categories
of PENDING, RUNNING, COMPLETE, ERROR, CANCELLED, DIED, TIMEOUT, IMPOSSIBLE, DEFERRED and
MOVED.

Usage

rrq_task_overview(task_ids = NULL, controller = NULL)

Arguments

task_ids Optional character vector of task ids for which you would like the overview. If
not given (or NULL) then the status of all task ids known to this rrq controller is
used (this might be fairly costly).

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A list with names corresponding to possible task status levels and values being the number of tasks
in that state.

36 rrq_task_position

Examples

obj <- rrq_controller("rrq:example")

ids <- rrq_task_list(controller = obj)
t(as.data.frame(rrq_task_overview(ids, controller = obj)))

rrq_task_position Find task position in queue

Description

Find the position of one or more tasks in the queue.

Usage

rrq_task_position(
task_ids,
missing = 0L,
queue = NULL,
follow = NULL,
controller = NULL

)

Arguments

task_ids Character vector of tasks to find the position for.

missing Value to return if the task is not found in the queue. A task will take value
missing if it is running, complete, errored, deferred etc and a positive integer if
it is in the queue, indicating its position (with 1) being the next task to run.

queue The name of the queue to query (defaults to the "default" queue).

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

An integer vector, the same length as task_ids

rrq_task_preceeding 37

rrq_task_preceeding List tasks ahead of a task

Description

List the tasks in front of task_id in the queue. If the task is missing from the queue this will return
NULL. If the task is next in the queue this will return an empty character vector.

Usage

rrq_task_preceeding(task_id, queue = NULL, follow = NULL, controller = NULL)

Arguments

task_id Task to find the position for.

queue The name of the queue to query (defaults to the "default" queue).

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

rrq_task_progress Fetch task progress information

Description

Retrieve task progress, if set. This will be NULL if progress has never been registered, otherwise
whatever value was set - can be an arbitrary R object.

Usage

rrq_task_progress(task_id, controller = NULL)

Arguments

task_id A single task id for which the progress is wanted.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Any set progress object

38 rrq_task_progress_update

rrq_task_progress_update

Post task update

Description

Post a task progress update. The progress system in rrq is agnostic about how you are going to
render your progress, and so it just a convention - see Details below. Any R object can be sent as a
progress value (e.g., a string, a list, etc).

Usage

rrq_task_progress_update(value, error = FALSE)

Arguments

value An R object with the contents of the update. This will overwrite any previous
progress value, and can be retrieved by calling rrq_task_progress. A value of
NULL will appear to clear the status, as NULL will also be returned if no status is
found for a task.

error Logical, indicating if we should throw an error if not running as an rrq task. Set
this to FALSE if you want code to work without modification within and outside
of an rrq job, or to TRUE if you want to be sure that progress messages have
made it to the server.

Details

In order to report on progress, a task may, in it’s code, write

rrq::rrq_task_progress_update("task is 90% done")

and this information will be fetchable by calling rrq_task_progress with the task_id.

It is also possible to register progress without acquiring a dependency on rrq. If your package/script
includes code like:

progress <- function(message) {
signalCondition(structure(list(message = message),

class = c("progress", "condition")))
}

(this function can be called anything - the important bit is the body function body - you must return
an object with a message element and the two class attributes progress and condition).

then you can use this in the same way as rrq::rrq_task_progress_update above in your code.
When run without using rrq, this function will appear to do nothing.

rrq_task_result 39

Examples

obj <- rrq_controller("rrq:example")

f <- function(n) {
for (i in seq_len(n)) {
rrq::rrq_task_progress_update(sprintf("Iteration %d / %d", i, n))
Sys.sleep(0.1)

}
n

}

t <- rrq_task_create_call(f, list(5), controller = obj)
This might be empty at first
rrq_task_progress(t, controller = obj)
Wait for the task to complete
rrq_task_wait(t, controller = obj)
Contains the _last_ progress message
rrq_task_progress(t, controller = obj)

rrq_task_result Fetch single task result

Description

Get the result for a single task (see rrq_task_results for a method for efficiently getting multiple
results at once). Returns the value of running the task if it is complete, and an error otherwise.

Usage

rrq_task_result(task_id, error = FALSE, follow = NULL, controller = NULL)

Arguments

task_id The single id for which the result is wanted.

error Logical, indicating if we should throw an error if a task was not successful.
By default (error = FALSE), in the case of the task result returning an error we
return an object of class rrq_task_error, which contains information about
the error. Passing error = TRUE calls stop() on this error if it is returned.

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

40 rrq_task_results

Value

The result of your task. This may be an error (an object with class rrq_task_error) if your task
has failed.

Examples

obj <- rrq_controller("rrq:example")

Create a task, wait for it to finish and fetch its result
t <- rrq_task_create_expr(runif(1), controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

Tasks that fail do not fail on result, but instead return an
object with the class "rrq_task_error"
t <- rrq_task_create_expr(readRDS("somefile.rds"), controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)

rrq_task_results Get the results of a group of tasks, returning them as a list. See
rrq_task_result for getting the result of a single task.

Description

Get the results of a group of tasks, returning them as a list. See rrq_task_result for getting the result
of a single task.

Usage

rrq_task_results(
task_ids,
error = FALSE,
named = FALSE,
follow = NULL,
controller = NULL

)

Arguments

task_ids A vector of task ids for which the task result is wanted.

error Logical, indicating if we should throw an error if the task was not successful.
See rrq_task_result() for details.

named Logical, indicating if the return value should be named with the task ids; as these
are quite long this can make the value a little awkward to work with.

rrq_task_retry 41

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A list, one entry per result. This function errors if any task is not available. If named = TRUE, then
this list is named with the task_ids.

Examples

obj <- rrq_controller("rrq:example")

ts <- rrq_task_create_bulk_call(sqrt, 1:10, controller = obj)
rrq_task_wait(ts, controller = obj)
rrq_task_results(ts, controller = obj)

For a single task, rrq_task_result and rrq_task_results differ
in the return type; rrq_task_results always returns a list:
t <- ts[[1]]
rrq_task_result(t, controller = obj)
rrq_task_results(t, controller = obj)

rrq_task_retry Retry tasks

Description

Retry a task (or set of tasks). Typically this is after failure (e.g., ERROR, DIED or similar) but you can
retry even successfully completed tasks. Once retried, functions that retrieve information about a
task (e.g., rrq_task_status(), [rrq_task_result()]) will behave differently depending on the value of their fol-
lowargument. Seevignette("fault-tolerance")‘ for more details.

Usage

rrq_task_retry(task_ids, controller = NULL)

Arguments

task_ids Task ids to retry.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

42 rrq_task_status

Value

New task ids

Examples

obj <- rrq_controller("rrq:example")

It's straightforward to see the effect of retrying a task with
one that produces a different value each time, so here, we use a
simple task that draws one normally distributed random number
t1 <- rrq_task_create_expr(rnorm(1), controller = obj)
rrq_task_wait(t1, controller = obj)
rrq_task_result(t1, controller = obj)

If we retry the task we'll get a different value:
t2 <- rrq_task_retry(t1, controller = obj)
rrq_task_wait(t2, controller = obj)
rrq_task_result(t2, controller = obj)

Once a task is retried, most of the time (by default) you can use
the original id and the new one exchangeably:
rrq_task_result(t1, controller = obj)
rrq_task_result(t2, controller = obj)

Use the 'follow' argument to modify this behaviour
rrq_task_result(t1, follow = FALSE, controller = obj)
rrq_task_result(t2, follow = FALSE, controller = obj)

See the retry chain with rrq_task_info
rrq_task_info(t1, controller = obj)
rrq_task_info(t2, controller = obj)

rrq_task_status Fetch task statuses

Description

Return a character vector of task statuses. The name of each element corresponds to a task id, and
the value will be one of the possible statuses ("PENDING", "COMPLETE", etc).

Usage

rrq_task_status(task_ids, named = FALSE, follow = NULL, controller = NULL)

Arguments

task_ids Optional character vector of task ids for which you would like statuses.

rrq_task_times 43

named Logical, indicating if the return value should be named with the task ids; as these
are quite long this can make the value a little awkward to work with.

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector the same length as task_ids

Examples

obj <- rrq_controller("rrq:example")

ts <- rrq_task_create_bulk_call(sqrt, 1:10, controller = obj)
rrq_task_status(ts, controller = obj)
rrq_task_wait(ts, controller = obj)
rrq_task_status(ts, controller = obj)

rrq_task_times Fetch task times

Description

Fetch times for tasks at points in their life cycle. For each task returns the time of submission,
starting and completion (not necessarily successfully; this includes errors and interruptions). If a
task has not reached a point yet (e.g., submitted but not run, or running but not finished) the time will
be NA). Times are returned in unix timestamp format in UTC; you can use redux::redis_time_to_r
to convert them to a POSIXt object.

Usage

rrq_task_times(task_ids, follow = NULL, controller = NULL)

Arguments

task_ids A vector of task ids

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

44 rrq_task_wait

Value

A matrix of times, with row names corresponding to task ids. We may change this to a data.frame
at some point in the future.

Examples

obj <- rrq_controller("rrq:example")

t <- rrq_task_create_expr(Sys.sleep(3), controller = obj)
rrq_task_times(t, controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_times(t, controller = obj)

rrq_task_wait Wait for group of tasks

Description

Wait for a task, or set of tasks, to complete. If you have used rrq prior to version 0.8.0, you might
expect this function to return the result, but we now return a logical value which indicates success
or not. You can fetch the task result with rrq_task_result.

Usage

rrq_task_wait(
task_id,
timeout = NULL,
time_poll = 1,
progress = NULL,
follow = NULL,
controller = NULL

)

Arguments

task_id A vector of task ids to poll for (can be one task or many)

timeout Optional timeout, in seconds, after which an error will be thrown if the task has
not completed. If not given, falls back on the controller’s timeout_task_wait
(see rrq_controller)

time_poll Optional time with which to "poll" for completion. By default this will be 1
second; this is the time that each request for a completed task may block for
(however, if the task is finished before this, the actual time waited for will be
less). Increasing this will reduce the responsiveness of your R session to inter-
rupting, but will cause slightly less network load. Values less than 1s are only
supported with Redis server version 6.0.0 or greater (released September 2020).

rrq_worker 45

progress Optional logical indicating if a progress bar should be displayed. If NULL we
fall back on the value of the global option rrq.progress, and if that is unset
display a progress bar if in an interactive session.

follow Optional logical, indicating if we should follow any redirects set up by doing
rrq_task_retry. If not given, falls back on the value passed into the controller, the
global option rrq.follow, and finally TRUE. Set to FALSE if you want to return
information about the original task, even if it has been subsequently retried.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A scalar logical value; TRUE if all tasks complete successfully and FALSE otherwise

Examples

obj <- rrq_controller("rrq:example")
t1 <- rrq_task_create_expr(Sys.sleep(1), controller = obj)
rrq_task_wait(t1, controller = obj)

The return value of wait gives a summary of successfullness
of the task
t2 <- rrq_task_create_expr(stop("Some error"), controller = obj)
rrq_task_wait(t2, controller = obj)

If you wait on many tasks, the return value is effectively
reduced with "all" (so the result is TRUE if all tasks were
successful)
rrq_task_wait(c(t1, t2), controller = obj)

rrq_worker rrq queue worker

Description

rrq queue worker

rrq queue worker

Details

A rrq queue worker. These are not typically for interacting with but will sit and poll a queue for
jobs.

Public fields

id The id of the worker
config The name of the configuration used by this worker
controller An rrq controller object

46 rrq_worker

Methods

Public methods:
• rrq_worker$new()

• rrq_worker$info()

• rrq_worker$log()

• rrq_worker$load_envir()

• rrq_worker$poll()

• rrq_worker$step()

• rrq_worker$loop()

• rrq_worker$format()

• rrq_worker$timer_start()

• rrq_worker$progress()

• rrq_worker$task_eval()

• rrq_worker$shutdown()

Method new(): Constructor

Usage:
rrq_worker$new(
queue_id,
name_config = "localhost",
worker_id = NULL,
timeout_config = 0,
is_child = FALSE,
con = redux::hiredis()

)

Arguments:
queue_id The queue id
name_config Optional name of the configuration. The default "localhost" configuration always

exists. Create new configurations using rrq_worker_config_save.
worker_id Optional worker id. If omitted, a random id will be created.
timeout_config How long to try and read the worker configuration for. Will attempt to read

once a second and throw an error if config cannot be located after timeout seconds. Use
this to create workers before their configurations are available. The default (0) is to assume
that the configuration is immediately available.

is_child Logical, used to indicate that this is a child of the real worker. If is_child is TRUE,
then most other arguments here have no effect (e.g., queue all the timeout / idle / polling
arguments) as they come from the parent. Not for general use.

con A redis connection

Method info(): Return information about this worker, a list of key-value pairs.

Usage:
rrq_worker$info()

Method log(): Create a log entry. This will print a human readable format to screen and a
machine-readable format to the redis database.

rrq_worker 47

Usage:
rrq_worker$log(label, value = NULL)

Arguments:
label Scalar character, the title of the log entry
value Character vector (or null) with log values

Method load_envir(): Load the worker environment by creating a new environment object
and running the create hook (if configured). See rrq_worker_envir_set() for details.

Usage:
rrq_worker$load_envir()

Method poll(): Poll for work

Usage:
rrq_worker$poll(immediate = FALSE)

Arguments:
immediate Logical, indicating if we should not do a blocking wait on the queue but instead

reducing the timeout to zero. Intended primarily for use in the tests.

Method step(): Take a single "step". This consists of

1. Poll for work ($poll())
2. If work found, run it (either a task or a message)
3. If work not found, check the timeout

Usage:
rrq_worker$step(immediate = FALSE)

Arguments:
immediate Logical, indicating if we should not do a blocking wait on the queue but instead

reducing the timeout to zero. Intended primarily for use in the tests.

Method loop(): The main worker loop. Use this to set up the main worker event loop, which
will continue until exiting (via a timeout or message).

Usage:
rrq_worker$loop(immediate = FALSE)

Arguments:
immediate Logical, indicating if we should not do a blocking wait on the queue but instead

reducing the timeout to zero. Intended primarily for use in the tests.

Method format(): Create a nice string representation of the worker. Used automatically to print
the worker by R6.

Usage:
rrq_worker$format()

Method timer_start(): Start the timer

Usage:
rrq_worker$timer_start()

48 rrq_worker_config

Method progress(): Submit a progress message. See rrq_task_progress_update() for
details of this mechanism.

Usage:
rrq_worker$progress(value, error = TRUE)

Arguments:
value An R object with the contents of the update. This will overwrite any previous progress

value, and can be retrieved with rrq_task_progress. A value of NULL will appear to clear the
status, as NULL will also be returned if no status is found for a task.

error Logical, indicating if we should throw an error if not running as an rrq task. Set this to
FALSE if you want code to work without modification within and outside of an rrq job, or
to TRUE if you want to be sure that progress messages have made it to the server.

Method task_eval(): Evaluate a task. When running a task on a separate process, we will
always set two environment variables: * RRQ_WORKER_ID this is the id field * RRQ_TASK_ID this is
the task id

Usage:
rrq_worker$task_eval(task_id)

Arguments:
task_id A task identifier. It is undefined what happens if this identifier does not exist.

Method shutdown(): Stop the worker

Usage:
rrq_worker$shutdown(status = "OK", graceful = TRUE)

Arguments:
status the worker status; typically be one of OK or ERROR but can be any string
graceful Logical, indicating if we should request a graceful shutdown of the heartbeat, if

running.

rrq_worker_config Create worker configuration

Description

Create a worker configuration, suitable to pass into rrq_worker_config_save. The results of this
function should not be modified.

Usage

rrq_worker_config(
queue = NULL,
verbose = TRUE,
logdir = NULL,
poll_queue = NULL,
timeout_idle = Inf,

rrq_worker_config 49

poll_process = 1,
timeout_process_die = 2,
heartbeat_period = NULL

)

Arguments

queue Optional character vector of queues to listen on for tasks. There is a default
queue which is always listened on (called ’default’). You can specify additional
names here and tasks put onto these queues with rrq_task_create_expr() (or
other functions) will have higher priority than the default. You can explicitly
list the "default" queue (e.g., queue = c("high", "default", "low")) to set
the position of the default queue.

verbose Logical, indicating if the worker should print logging output to the screen. Log-
ging to screen has a small but measurable performance cost, and if you will not
collect system logs from the worker then it is wasted time. Logging to the redis
server is always enabled.

logdir Optional log directory to use for writing logs when queuing tasks in a sepa-
rate process. If given, then logs will be saved to <logdir>/<task_id>. This
directory should be writable by all workers and readable by the controller.

poll_queue Polling time for new tasks on the queue or messages. Longer values here will
reduce the impact on the database but make workers less responsive to being
killed with an interrupt (control-C or Escape). The default should be good for
most uses, but shorter values are used for debugging. Importantly, longer times
here do not increase the time taken for a worker to detect new tasks.

timeout_idle Optional timeout that sets the length of time after which the worker will exit if it
has not processed a task. This is (roughly) equivalent to issuing a TIMEOUT_SET
message after initialising the worker, except that it’s guaranteed to be run by all
workers.

poll_process Polling time indicating how long to wait for a background process to produce
stdout or stderr. Only used for tasks queued with separate_process TRUE.

timeout_process_die

Timeout indicating how long to wait wait for the background process to respond
to SIGTERM, either as we stop a worker or cancel a task. Only used for tasks
queued with separate_process TRUE. If your tasks may take several seconds
to stop, you may want to increase this to ensure a clean exit.

heartbeat_period

Optional period for the heartbeat. If non-NULL then a heartbeat process will be
started (using rrq_heartbeat) which can be used to build fault tolerant queues.
See vignette("fault-tolerance") for details. If NULL (the default), then no
heartbeat is configured.

Value

A list of values with class rrq_worker_config; these should be considered read-only, and contain
only the validated input parameters.

50 rrq_worker_config_read

Examples

rrq::rrq_worker_config()

rrq_worker_config_list

List worker configurations

Description

Return names of worker configurations saved by rrq_worker_config_save()

Usage

rrq_worker_config_list(controller = NULL)

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector of names; these can be passed as the name argument to rrq_worker_config_read().

Examples

obj <- rrq_controller("rrq:example")

cfg <- rrq_worker_config("fast")
rrq_worker_config_save("use-fast", cfg, controller = obj)
rrq_worker_config_list(controller = obj)

rrq_worker_config_read

Read worker configuration

Description

Return the value of a of worker configuration saved by rrq_worker_config_save()

Usage

rrq_worker_config_read(name, timeout = 0, controller = NULL)

rrq_worker_config_save 51

Arguments

name Name of the configuration (see rrq_worker_config_list())

timeout Optionally, a timeout to wait for a worker configuration to appear. Generally you
won’t want to set this, but it can be used to block until a configuration becomes
available.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Examples

obj <- rrq_controller("rrq:example")

cfg <- rrq_worker_config("fast")
rrq_worker_config_save("use-fast", cfg, controller = obj)
rrq_worker_config_read("use-fast", controller = obj)

rrq_worker_config_save

Save worker configuration

Description

Save a worker configuration, which can be used to start workers with a set of options with the cli.
These correspond to arguments to rrq_worker. This function will be renamed soon

Usage

rrq_worker_config_save(name, config, overwrite = TRUE, controller = NULL)

Arguments

name Name for this configuration

config A worker configuration, created by rrq_worker_config()

overwrite Logical, indicating if an existing configuration with this name should be over-
written if it exists. If FALSE, then the configuration is not updated, even if it
differs from the version currently saved.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Invisibly, a boolean indicating if the configuration was updated.

52 rrq_worker_delete_exited

Examples

obj <- rrq_controller("rrq:example")

cfg <- rrq_worker_config("fast")
rrq_worker_config_save("use-fast", cfg, controller = obj)
rrq_worker_config_list(controller = obj)

rrq_worker_delete_exited

Clean up exited workers

Description

Cleans up workers known to have exited. See vignette("fault-tolerance") for more details.

Usage

rrq_worker_delete_exited(worker_ids = NULL, controller = NULL)

Arguments

worker_ids Optional vector of worker ids. If NULL then rrq looks for exited workers using
rrq_worker_list_exited(). If given, we check that the workers are known
and have exited.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector of workers that were deleted

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_delete_exited(controller = obj)

rrq_worker_detect_exited 53

rrq_worker_detect_exited

Detect exited workers

Description

Detects exited workers through a lapsed heartbeat. This differs from rrq_worker_list_exited()
which lists workers that have definitely exited by checking to see if any worker that runs a heart-
beat process has not reported back in time, then marks that worker as exited. See vignette("fault-
tolerance") for details.

Usage

rrq_worker_detect_exited(controller = NULL)

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

Undefined.

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_detect_exited(controller = obj)

rrq_worker_envir_set Set worker environment

Description

Register a function to create an environment when creating a worker. When a worker starts, they
will run this function.

Usage

rrq_worker_envir_set(create, notify = TRUE, controller = NULL)

54 rrq_worker_exists

Arguments

create A function that will create an environment. It will be called with one parameter
(an environment), in a fresh R session. The function rrq_envir() can be used
to create a suitable function for the most common case (loading packages and
sourcing scripts). Set to NULL to remove environment creation function (i.e., to
start workers with an essentially empty environment).

notify Boolean, indicating if we should send a REFRESH message to all workers to up-
date their environment.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Examples

obj <- rrq_controller("rrq:example")

rrq_worker_envir_set(rrq_envir(packages = "ids"), controller = obj)
t <- rrq_task_create_expr(search(), controller = obj)
rrq_task_wait(t, controller = obj)
rrq_task_result(t, controller = obj)
rrq_worker_log_tail(n = 5, controller = obj)

rrq_worker_envir_set(NULL, controller = obj)

rrq_worker_exists Test if a worker exists

Description

Test if a worker exists

Usage

rrq_worker_exists(name, controller = NULL)

Arguments

name Name of the worker

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A logical value

rrq_worker_info 55

Examples

obj <- rrq_controller("rrq:example")
w <- rrq_worker_list(controller = obj)
rrq_worker_exists(w, controller = obj)
rrq_worker_exists("bob-the-builder", controller = obj)

rrq_worker_info Worker information

Description

Returns a list of information about active workers (or exited workers if worker_ids includes them).

Usage

rrq_worker_info(worker_ids = NULL, controller = NULL)

Arguments

worker_ids Optional vector of worker ids. If NULL then all active workers are used.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A list of worker_info objects

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_info(controller = obj)

rrq_worker_len Number of active workers

Description

Returns the number of active workers

Usage

rrq_worker_len(controller = NULL)

56 rrq_worker_list

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

An integer

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_len(controller = obj)

rrq_worker_list List active workers

Description

Returns the ids of active workers. This does not include exited workers; use rrq_worker_list_exited()
for that.

Usage

rrq_worker_list(controller = NULL)

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector of worker names

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_list(controller = obj)

rrq_worker_list_exited 57

rrq_worker_list_exited

List exited workers

Description

Returns the ids of workers known to have exited

Usage

rrq_worker_list_exited(controller = NULL)

Arguments

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector of worker names

Examples

obj <- rrq_controller("rrq:example")

At this point you might have an exited worker, depending on
which examples have been run so far!
rrq_worker_list_exited(controller = obj)

Spawn a new worker so that we can stop it:
w <- rrq_worker_spawn(1, controller = obj)$id
w$id
Stop this worker and see that it appears in the list of exited
workers:
rrq_worker_stop(w$id, controller = obj)
rrq_worker_list_exited(controller = obj)

We can delete this exited worker:
rrq_worker_delete_exited(w$id, controller = obj)

After this, it is no longer listed as exited:
rrq_worker_list_exited(controller = obj)

58 rrq_worker_log_tail

rrq_worker_load Report on worker load

Description

Report on worker "load" (the number of workers being used over time). Reruns an object of class
worker_load, for which a mean method exists (this function is a work in progress and the interface
may change).

Usage

rrq_worker_load(worker_ids = NULL, controller = NULL)

Arguments

worker_ids Optional vector of worker ids. If NULL then all active workers are used.
controller The controller to use. If not given (or NULL) we’ll use the controller registered

with rrq_default_controller_set().

Value

An object of class "worker_load", which has a pretty print method.

Examples

obj <- rrq_controller("rrq:example")
mean(rrq_worker_load(controller = obj))

rrq_worker_log_tail Returns the last (few) elements in the worker log, in a programmati-
cally useful format (see Value).

Description

Returns the last (few) elements in the worker log, in a programmatically useful format (see Value).

Usage

rrq_worker_log_tail(worker_ids = NULL, n = 1, controller = NULL)

Arguments

worker_ids Optional vector of worker ids. If NULL then all active workers are used.
n Number of elements to select, the default being the single last entry. Use Inf or

0 to indicate that you want all log entries
controller The controller to use. If not given (or NULL) we’ll use the controller registered

with rrq_default_controller_set().

rrq_worker_process_log 59

Value

A data.frame with columns:

• worker_id: the worker id

• child: the process id, an integer, where logs come from a child process from a task queued
with separate_process = TRUE

• time: the time from Redis when the event happened; see redux::redis_time to convert this to
an R time

• command: the command sent from or to the worker

• message: the message corresponding to that command

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_log_tail(n = 10, controller = obj)

rrq_worker_process_log

Read worker process log

Description

Return the contents of a worker’s process log, if it is located on the same physical storage (in-
cluding network storage) as the controller. This will generally behave for workers started with
rrq_worker_spawn but may require significant care otherwise.

Usage

rrq_worker_process_log(worker_id, controller = NULL)

Arguments

worker_id The worker id for which the log is required

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector, one line per line in the log. If logging is enabled but the worker has not produced
any logs, this will be an empty character vector. If logging is not enabled, then this function will
throw.

60 rrq_worker_script

Examples

obj <- rrq_controller("rrq:example")
worker_id <- rrq_worker_list(controller = obj)[[1]]
tryCatch(

rrq_worker_process_log(worker_id, controller = obj),
error = identity)

rrq_worker_script Write worker runner script

Description

Write a small script that can be used to launch a rrq worker. The resulting script takes the same
arguments as the rrq_worker constructor, but from the command line. See Details.

Usage

rrq_worker_script(path, versioned = FALSE)

Arguments

path The path to write to. Should be a directory (or one will be created if it does not
yet exist). The final script will be file.path(path, "rrq_worker")

versioned Logical, indicating if we should write a versioned R script that will use the same
path to Rscript as the running session. If FALSE we use #!/usr/bin/env Rscript
which will pick up Rscript from the path. You may want to use a versioned
script in tests or if you have multiple R versions installed simultaneously.

Details

If you need to launch rrq workers from a script, it’s convenient not to have to embed R code like:

Rscript -e 'rrq::rrq_worker$new("myqueue")'

as this is error-prone and unpleasant to quote and read. You can use the function rrq_worker_script
to write out a small helper script which lets you write:

./path/rrq_worker myqueue

instead.

The helper script supports the same arguments as the [rrq::rrq_worker] constructor:

• queue_id as the sole positional argument

• name_config as --config

• worker_id as --worker-id

rrq_worker_spawn 61

To change the redis connection settings, set the REDIS_URL environment variable (see redux::hiredis()
for details).

For example to create a worker myworker with configuration myconfig on queue myqueue you
might use

./rrq_worker --config=myconfig --worker-id=myworker myqueue

Value

Invisibly, the path to the script

Examples

path <- rrq::rrq_worker_script(tempfile())
readLines(path)

rrq_worker_spawn Spawn a worker

Description

Spawn a worker in the background

Usage

rrq_worker_spawn(
n = 1,
logdir = NULL,
timeout = 600,
name_config = "localhost",
worker_id_base = NULL,
time_poll = 0.2,
progress = NULL,
controller = NULL

)

Arguments

n Number of workers to spawn

logdir Path of a log directory to write the worker process log to, interpreted relative to
the current working directory

timeout Time to wait for workers to appear. If 0 then we don’t wait for workers to
appear (you can run the wait_alive method of the returned object to run this
test manually)

name_config Name of the configuration to use. By default the "localhost" configuration is
used

62 rrq_worker_status

worker_id_base Optional base to construct the worker ids from. If omitted a random base will
be used. Actual ids will be created but appending integers to this base.

time_poll Polling period (in seconds) while waiting for workers to come up.

progress Show a progress bar while waiting for workers (when timeout is at least 0)

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Details

Spawning multiple workers. If n is greater than one, multiple workers will be spawned. This
happens in parallel so it does not take n times longer than spawning a single worker.

Beware that signals like Ctrl-C passed to this R instance can still propagate to the child processes
and can result in them dying unexpectedly. It is probably safer to start processes in a completely
separate session.

Value

An rrq_worker_manager object with fields:

• id: the ids of the spawned workers

• wait_alive: a method to wait for workers to come alive

• stop: a method to stop workers

• kill: a method to kill workers abruptly by sending a signal

• is_alive: a method that checks if a worker is currently alive

• logs: a method that returns logs for a single worker

All the methods accept a vector of worker names, or integers, except logs which requires a single
worker id (as a string or integer). For all methods except logs, the default of NULL means "all
managed workers".

rrq_worker_status Worker statuses

Description

Returns a character vector of current worker statuses

Usage

rrq_worker_status(worker_ids = NULL, controller = NULL)

Arguments

worker_ids Optional vector of worker ids. If NULL then all active workers are used.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

rrq_worker_stop 63

Value

A character vector of statuses, named by worker

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_status(controller = obj)

rrq_worker_stop Stop workers

Description

Stop workers, causing them to exit. Workers can be stopped in a few different ways (see Details),
but after executing this function, assume that any worker targeted will no longer be available to
work on tasks.

Usage

rrq_worker_stop(
worker_ids = NULL,
type = "message",
timeout = 0,
time_poll = 0.1,
progress = NULL,
controller = NULL

)

Arguments

worker_ids Optional vector of worker ids. If NULL then all active workers will be stopped.
type The strategy used to stop the workers. Can be message, kill or kill_local

(see Details).
timeout Optional timeout; if greater than zero then we poll for a response from the

worker for this many seconds until they acknowledge the message and stop (only
has an effect if type is message). If a timeout of greater than zero is given, then
for a message-based stop we wait up to this many seconds for the worker to exit.
That means that we might wait up to 2 * timeout seconds for this function to
return.

time_poll If type is message and timeout is greater than zero, this is the polling interval
used between redis calls. Increasing this reduces network load but decreases the
ability to interrupt the process.

progress Optional logical indicating if a progress bar should be displayed. If NULL we
fall back on the value of the global option rrq.progress, and if that is unset
display a progress bar if in an interactive session.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

64 rrq_worker_task_id

Details

The type parameter indicates the strategy used to stop workers, and interacts with other parameters.
The strategies used by the different values are:

• message, in which case a STOP message will be sent to the worker, which they will receive
after finishing any currently running task (if RUNNING; IDLE workers will stop immediately).

• kill, in which case a kill signal will be sent via the heartbeat (if the worker is using one).
This will kill the worker even if is currently working on a task, eventually leaving that task
with a status of DIED.

• kill_local, in which case a kill signal is sent using operating system signals, which requires
that the worker is on the same machine as the controller.

Value

The names of the stopped workers, invisibly.

Examples

obj <- rrq_controller("rrq:example")
w <- rrq_worker_spawn(controller = obj)
rrq_worker_list(controller = obj)
rrq_worker_stop(w$id, timeout = 10, controller = obj)
rrq_worker_list(controller = obj)

rrq_worker_task_id Current task id for workers

Description

Returns the task id that each worker is working on, if any.

Usage

rrq_worker_task_id(worker_ids = NULL, controller = NULL)

Arguments

worker_ids Optional vector of worker ids. If NULL then all active workers are used.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Value

A character vector, NA where nothing is being worked on, otherwise corresponding to a task id.

rrq_worker_wait 65

Examples

obj <- rrq_controller("rrq:example")
rrq_worker_list(controller = obj)

This example might be a bit racy: we need to run a task that
sleeps, and then sleep a little bit for the task to be picked up
by a worker. Typically this happens very quickly but there are
no guarantees.
t <- rrq_task_create_expr(Sys.sleep(1), controller = obj)
Sys.sleep(.2)
rrq_worker_task_id(controller = obj)

You can always find out which worker did work on a task though:
rrq_task_info(t, controller = obj)$worker

rrq_worker_wait Wait for workers

Description

Wait for workers to appear.

Usage

rrq_worker_wait(
worker_ids,
timeout = Inf,
time_poll = 0.2,
progress = NULL,
controller = NULL

)

Arguments

worker_ids A vector of worker ids to wait for

timeout Timeout in seconds; default is to wait forever

time_poll Poll interval, in seconds. Must be an integer

progress Optional logical indicating if a progress bar should be displayed. If NULL we
fall back on the value of the global option rrq.progress, and if that is unset
display a progress bar if in an interactive session.

controller The controller to use. If not given (or NULL) we’ll use the controller registered
with rrq_default_controller_set().

Index

callr::r, 26

data.frame, 23, 24, 59

lapply(), 26

object_store, 3, 6, 8
object_store_offload_disk, 4, 5, 6, 8

redux::hiredis(), 9, 61
redux::redis_time, 59
redux::redis_time_to_r, 43
rlang::hash(), 3
rrq_configure, 8
rrq_controller, 4, 8, 9, 9, 16, 44
rrq_default_controller_clear

(rrq_default_controller_set),
11

rrq_default_controller_set, 11
rrq_default_controller_set(), 12, 17–24,

26, 27, 29, 31–37, 39, 41, 43, 45,
50–59, 62–65

rrq_deferred_list, 12
rrq_destroy, 12
rrq_envir, 13
rrq_envir(), 54
rrq_heartbeat, 14, 49
rrq_heartbeat_kill, 16
rrq_message_get_response, 17
rrq_message_get_response(), 20
rrq_message_has_response, 18
rrq_message_response_ids, 19
rrq_message_send, 19
rrq_message_send(), 20
rrq_message_send_and_wait, 20
rrq_queue_length, 21
rrq_queue_list, 21, 22
rrq_queue_remove, 22
rrq_task_cancel, 23
rrq_task_create_bulk_call, 23

rrq_task_create_bulk_expr, 23, 25, 30
rrq_task_create_call, 23, 26, 30
rrq_task_create_expr, 23, 25, 28, 34
rrq_task_data, 30
rrq_task_delete, 31
rrq_task_exists, 32
rrq_task_info, 33
rrq_task_list, 34
rrq_task_log, 34
rrq_task_overview, 35
rrq_task_position, 36
rrq_task_preceeding, 37
rrq_task_progress, 37, 38, 48
rrq_task_progress_update, 38
rrq_task_progress_update(), 48
rrq_task_result, 39, 40, 44
rrq_task_result(), 28, 40
rrq_task_results, 39, 40
rrq_task_retry, 10, 36, 37, 39, 41, 41, 43, 45
rrq_task_status, 42
rrq_task_status(), 28, 41
rrq_task_times, 43
rrq_task_wait, 10, 44
rrq_worker, 45, 51, 60
rrq_worker_config, 48
rrq_worker_config(), 51
rrq_worker_config_list, 50
rrq_worker_config_list(), 51
rrq_worker_config_read, 50
rrq_worker_config_read(), 50
rrq_worker_config_save, 46, 48, 51
rrq_worker_config_save(), 50
rrq_worker_delete_exited, 52
rrq_worker_detect_exited, 53
rrq_worker_envir_set, 13, 53
rrq_worker_envir_set(), 47
rrq_worker_exists, 54
rrq_worker_info, 55
rrq_worker_len, 55

66

INDEX 67

rrq_worker_list, 56
rrq_worker_list_exited, 57
rrq_worker_list_exited(), 52, 53, 56
rrq_worker_load, 58
rrq_worker_log_tail, 58
rrq_worker_process_log, 59
rrq_worker_script, 60
rrq_worker_spawn, 59, 61
rrq_worker_status, 62
rrq_worker_stop, 63
rrq_worker_stop(), 13
rrq_worker_task_id, 64
rrq_worker_wait, 65

serialize, 9

tools::pskill(), 16

	object_store
	object_store_offload_disk
	rrq_configure
	rrq_controller
	rrq_default_controller_set
	rrq_deferred_list
	rrq_destroy
	rrq_envir
	rrq_heartbeat
	rrq_heartbeat_kill
	rrq_message_get_response
	rrq_message_has_response
	rrq_message_response_ids
	rrq_message_send
	rrq_message_send_and_wait
	rrq_queue_length
	rrq_queue_list
	rrq_queue_remove
	rrq_task_cancel
	rrq_task_create_bulk_call
	rrq_task_create_bulk_expr
	rrq_task_create_call
	rrq_task_create_expr
	rrq_task_data
	rrq_task_delete
	rrq_task_exists
	rrq_task_info
	rrq_task_list
	rrq_task_log
	rrq_task_overview
	rrq_task_position
	rrq_task_preceeding
	rrq_task_progress
	rrq_task_progress_update
	rrq_task_result
	rrq_task_results
	rrq_task_retry
	rrq_task_status
	rrq_task_times
	rrq_task_wait
	rrq_worker
	rrq_worker_config
	rrq_worker_config_list
	rrq_worker_config_read
	rrq_worker_config_save
	rrq_worker_delete_exited
	rrq_worker_detect_exited
	rrq_worker_envir_set
	rrq_worker_exists
	rrq_worker_info
	rrq_worker_len
	rrq_worker_list
	rrq_worker_list_exited
	rrq_worker_load
	rrq_worker_log_tail
	rrq_worker_process_log
	rrq_worker_script
	rrq_worker_spawn
	rrq_worker_status
	rrq_worker_stop
	rrq_worker_task_id
	rrq_worker_wait
	Index

